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Abstract Residue-specific amide proton spin-flip rates K

were measured for peptide-free and peptide-bound cal-

modulin. K approximates the sum of NOE build-up rates

between the amide proton and all other protons. This work

outlines the theory of multi-proton relaxation, cross

relaxation and cross correlation, and how to approximate it

with a simple model based on a variable number of equi-

distant protons. This model is used to extract the sums of

K-rates from the experimental data. Error in K is estimated

using bootstrap methodology. We define a parameter Q as

the ratio of experimental K-rates to theoretical K-rates,

where the theoretical K-rates are computed from atomic

coordinates. Q is 1 in the case of no local motion, but

decreases to values as low as 0.5 with increasing domina-

tion of sidechain protons of the same residue to the amide

proton flips. This establishes Q as a monotonous measure

of local dynamics of the proton network surrounding the

amide protons. The method is applied to the study of

proton dynamics in Ca2?-saturated calmodulin, both free in

solution and bound to smMLCK peptide. The mean Q is

0.81 ± 0.02 for free calmodulin and 0.88 ± 0.02 for

peptide-bound calmodulin. This novel methodology thus

reveals the presence of significant interproton disorder in

this protein, while the increase in Q indicates rigidification

of the proton network upon peptide binding, confirming the

known high entropic cost of this process.

Keywords Cross correlation � Proteins � Entropy �
Spin diffusion � TROSY

Introduction

Several decades of NMR relaxation studies and computa-

tional molecular dynamics studies have firmly established

that proteins are involved in dynamical processes spanning

many time scales (Mittermaier and Kay 2006). Much of the

current attention is directed towards milli- and micro-sec-

ond motions (Loria et al. 1999), since those processes are

often directly related to functional conformational changes

(Wang et al. 2001; Eisenmesser et al. 2005; Tang et al.

2006).

NMR spin relaxation generated by sub-nanosecond

dynamics currently attracts somewhat less attention. The

likely reason is that the most accessible of sub-nanosecond

NMR dynamics measurements, 15N relaxation, appears to

disclose only the comparatively restricted motions of the

protein backbone. More precisely, 15N relaxation discloses

only the angular motion of the imaginary vectors perpen-

dicular to the NH bond-vectors in the protein backbone

(Fischer et al. 1997). In contrast, protein sidechains display

extensive dynamics at the sub-nano second timescale.

Using methyl-relaxation methods (Yang et al. 1998), Wand

et al. (Lee et al. 2000) have shown that the amplitudes of

the motions of (mostly buried) protein sidechains in the

protein calmodulin are large and highly disperse. Modern

computational molecular dynamics studies concur with

these findings (Best et al. 2005) and indicate, according to

fundamental physico-chemical rules (Lindemann 1910),

that some protein interiors classify rather as a liquid than as

a solid, except for the backbone (Zhou et al. 1999; Best

et al. 2005).
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The widespread sub-nanosecond mobility in proteins

indicated by sidechain dynamics experiments (Wand et al.

1995; Millet et al. 2002) cannot help but serve as a reser-

voir of configurational entropy to stabilize the folded pro-

tein relative to its highly entropic unfolded state. Local

motional hotspots may serve as joints for slower domain

motions (Labeikovsky et al. 2007) or allow induced fit in

intermolecular interaction, including substrate recognition.

Global changes in sub-nanosecond dynamics have been

related (Akke et al. 1993; Yang and Kay 1996) to sizable

entropic penalties to the affinity of ligand–protein binding

(Frederick et al. 2007) and to allosteric free energy in

positive cooperativity (Cooper and Dryden 1984; Mäler

et al. 2000). Hence (changes in), sub-nano second

dynamics have high relevance to biological functionality.

In this report, we refine our NMR method (Weaver and

Zuiderweg 2008) to probe the sub-nanosecond dynamics of

protein sidechains in the vicinity of the amide proton.

Briefly, we measure the cross relaxation between the two

components of NH longitudinal spin order of the amide-

nitrogen spin system: NzHa and NzHb. The cross relaxation

between these states is dominated by zero quantum spin-

flip interactions of the amide proton with nearby other

protons. We refer to the relaxation rate governing this

process as K. The pulse sequence (Weaver and Zuiderweg

2008) allows the measurement of both gz and K. In our

previous paper (Weaver and Zuiderweg 2008), we focused

on the extraction of gz out of the multi-exponential cross

relaxation rates. Here, we carry out the opposite: we extract

from the data precise K-rates using mathematical models

that can take into account up to 60 equidistant neighboring

protons. This approximate model was developed to make

K-rate extraction and statistical analysis computationally

feasible for large systems with many protons.

We record and analyze data for two samples of human

calmodulin, one without and one with the peptide

(smMLCKp) corresponding to the calmodulin binding

domain of the smooth muscle myosin light chain kinase

(Vogel 1994). Obtained K-rates vary widely for the dif-

ferent amide protons in both samples. This is not surpris-

ing, since each amide proton has a unique environment of

other protons. The resulting K-rates are directly related to

the classical NOE build-up rates, and can be predicted from

the (precise) coordinates of the structures in the protein

data base. We use this property to show that our method of

extracting the K-rates with a model based on equidistant

protons is precise and accurate.

Detailed analysis of our experimental data shows that

amide proton relaxation environments dominated by other

backbone protons are rather rigid, and that those dominated

by side chain protons are more mobile. This follows

common sense (Best et al. 2005), hence, it establishes Q as

a monotonous measure of local dynamics of the proton

network surrounding the amide protons. Nevertheless, Q

ratios cannot (yet) be formally related to order parameters.

This has as a disadvantage that it is not possible to asso-

ciate a single precise motion with Q. This same limitation

has also a positive side: Q is not so ‘‘myopic’’ as a real

order parameter which reports on the motions of a single

vector type.

The average ratio Q of measured and predicted K-rates,

denoted by\Q[, is found to be smaller than one, for both

liganded and unliganded calmodulin. Excitingly, we also

find that \Q[ is larger for liganded than for unliganded

calmodulin, suggesting that the motions are quenched upon

ligand binding. This result corresponds with the conclu-

sions of Wand et al. who studied the sub-nanosecond

dynamical differences between the two states for the same

protein/peptide complex using NMR methyl-director

dynamics experiments (Lee et al. 2000).

Our experimental method (Weaver and Zuiderweg

2008) is based on 15N–1H TROSY detection. Since K-rates

become faster with increasing molecular size, the method

holds considerable promise for investigation of sub-nano-

second dynamics in larger proteins.

Materials and methods

We carried out gz/j TROSY experiments (Weaver and

Zuiderweg 2008) for a 1 mM sample of calcium-saturated

chicken calmodulin in 10% D2O and for a 1 mM sample of

calcium-saturated chicken calmodulin in complex with the

calmodulin-binding domain of chicken gizzard smooth

muscle myosin light chain kinase (CaM/smMLCKp), also

in 10% D2O.

Each gz/j experiment consisted of acquiring sets of four

two-dimensional 1HN–15N TROSY-type spectra at several

different time points. gz/j experiments were run at 35�C on

a Bruker Avance II 500 MHz spectrometer equipped with a

triple-resonance gradient probe. The gz/j experimental

pulse sequence is essentially an S3E-filtered clean TROSY

sequence with relaxation decays included. The S3E filter

selects either H2NzHa or H2NzHb to pass through to the

relaxation period s. Relaxation diffuses the initial pure

state of H2NzHa or H2NzHb into a mixture of H2NzHa and

H2NzHb magnetization. The end of the experiment selects

for either the H2NzHa and H2NzHb component. When the

H2NzHa is selected, a TROSY readout follows. When the

H2NzHb component is selected, it is first converted to

H2NzHa before the TROSY readout follows. The experi-

ment is carried out corresponding to the four symmetric

reconversion (Pelupessy et al. 2003) sub-experiments: (I)

H2NzHa select ? H2NzHa detect; (II) H2NzHa select ?
H2NzHb detect; (III) H2NzHb select ? H2NzHb detect;

(IV) H2NzHb select ? H2NzHa detect.
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gz/j experiments at 35�C and 500 MHz were con-

ducted with 16 scans per spectrum, with 160 complex t1
values, at 17 relaxation time points (20, 30, 40,60, 60,

80, 90, 100, 120, 120, 140, 150, 160, 180, 180, 200,

210 ms). 160 complex t1, with a recovery delay of 1 s.

Experimental time was about 1 h 50 min per spectrum

leading to a total experiment time of 270 h over both

samples.

The first step in fitting the data is extracting j rates and

initial state purity information (see ‘‘Theory’’) by a

Levenberg–Marquardt nonlinear least squares fit of the

symmetric reconversion ratio (Pelupessy et al. 2003)

XðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

IIðtÞIIIðtÞ
IðtÞIVðtÞ

s

ð1Þ

These rates are then incorporated into a second nonlinear

least squares fit of residue-specific longitudinal 15N

CSA/15N–1H dipolar cross correlation (gz) rate and

relative efficiency of state observation for NzHa and NzHb

using the ratio

YðtÞ ¼ IVðtÞ
IðtÞ ð2Þ

as described in Weaver and Zuiderweg (2008) .

In order to determine the rotational diffusion tensor, the

gz rates were complemented with transverse 15N

CSA/15N–1H dipolar cross correlation (gxy) rates, deter-

mined using techniques as described by Wang et al. (2003)

using a recovery delay of 1 s, 16 scans, and 160 complex

points in t1, with five relaxation time points at 5.55, 11.1,

16.65, 22.2 and 27.75 ms.

Experimental site-specific rotational diffusion constants

were calculated from Kroenke et al. (1998)

Dexp
i ¼ xN

3
6
gxy

gz

� 7

� ��1=2

ð3Þ

Next, the site-specific rotational diffusion constants were

plotted against the function1
2

3 cos2 hi � 1ð Þ � P2 cos hi to

obtain the fitted site-specific rotational diffusion constants

as defined by

DFitted
i ¼ Diso �

ðDP � D?Þ
3

P2 cos hi ð4Þ

Here, Hi is the angle of the principle axis of the 15N CSA

tensor with the principal axis of the (axially symmetric)

diffusion tensor. PDB orientation and diffusion tensor fits

were carried out using the programs pdb_inertia and

quadric_diffusion (Palmer 2009). The diffusion tensor fits

are shown in Fig. 1, and the fitted values are shown in

Table 1. For free calmodulin, it was necessary to use dif-

ferent diffusion tensors for the N and C-terminal domains.

smMLCKp—bound calmodulin was found to diffuse

nearly isotropically, with a sc of 7.7 ns. All obtained values

are slightly smaller than those obtained for the same pro-

tein from 15N R2/R1 values (Lee et al. 2000). This is to be

expected, since the average R2 value is systematically

increased by exchange broadening (Lee et al. 2000).

In the further data analysis, the fitted site-specific rota-

tional diffusion constants were used in the orientation

dependent spectral density functions

JiðxÞ ¼
2

5

sCi

1þ xsCi
ð Þ2

ð5Þ

where sCi
¼ 1=6DFitted

i .

The calculation of Q depends on a proton–proton dis-

tance benchmark provided by a computationally proton-

ated X-ray structure. Structures used in this study are a

1.08 Å resolution structure of Ca2?-saturated smMLCKp-

bound calmodulin (2O5G) (Valentine et al. 2009) and a

1.0 Å resolution structure of Ca2?-saturated free cal-

modulin (1EXR) (Wilson and Brunger 2000). For the

purposes of this work 1EXR was edited into N-terminal

(1–76) and C-terminal (82–148) domains and the rota-

tional diffusion tensor of each domain was determined

independently. Protonation was accomplished with Mol-

Probity (Lovell et al. 2003). Methyl group correction for

rapid motional averaging was performed according to the

Fig. 1 Determination of the

rotational diffusion constants.

Left free calmodulin with closed

symbols for the N terminus, and

open symbols for the C

terminus. Lines are fits from the

program Quadric (Lee et al.

1997). Solid and dashed lines
are the fit for the N and C

terminus, respectively. Right
peptide-bound calmodulin (N

terminus = residues 1–76; C

terminus = residues 82–148)
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method of Tropp (1980) as detailed in Neuhaus and

Williamson (2000).

Following (Cruickshank 1999), the precision of the

position of an atom of ‘typical’ B-factor in an X-ray

structure is (very) approximately

rðr;BavgÞ ¼ 31=2ðNi=pÞ1=2C�1=3R dmin ð6Þ

where Ni is the total number of atoms in the structure, p is

nobs - nparams, nobs is the number of reflections, nparams is

the number of parameters (*4natoms for isotropic

refinement, *9natoms for fully anisotropic refinement as

in 1EXR and 2O5G), C is the completeness for range of the

data used in refinement, R is the crystallographic R value,

and dmin is the resolution of the structure. Assuming that

the ‘typical’ B-factor can be used for computationally

added protons, that any additional error introduced by

MolProbity protonation is subsumed in Cruickshank’s

generous error estimation, and that distance errors

between protons are uncorrelated (6), leads to a point-to-

point distance error estimate for X-ray structures of

rðr;BavgÞ ¼ 61=2ðNi=pÞ1=2C�1=3R dmin ð7Þ

based on propagating the error of the difference between

two position estimates. A point-to-point distance precision

of *0.055 Å for 1EXR and *0.075 Å for 2O5G are

indicated by (7). If proton–proton distances are assumed to

be a Gaussian distribution with a mean established by the

protonated X-ray structure and a standard deviation given

by the point-to-point distance error given above, we expect

X-ray structural imprecision to contribute *5.5% error in

theoretical K calculations for the 1.00 Å 1EXR structure

and *7.5% error in theoretical K calculations for the

1.08 Å 2O5G structures. When calculating Q, the error

introduced by this evaluation of theoretical K imprecision

is larger by a factor of 1.8 than the error introduced by

imprecision in experimental K fitting.

Theory

I. Rigorous description of the relaxation network

Consider the longitudinal magnetization of an amide NH

spin system in a protein at the large-molecule limit. We

prepare H2NzHa and H2NzHb magnetization from linear

combinations of nitrogen one-spin order Nz and two-spin

order 2NzHz.

ffiffiffi

2
p

NzHa ¼
ffiffiffi

2
p

2
Nz þ 2NzHzð Þ

ffiffiffi

2
p

NzHb ¼
ffiffiffi

2
p

2
Nz � 2NzHzð Þ

ð8Þ

These are the proton-up and proton-down components of

nitrogen Z magnetization, respectively. We will refer to them

collectively as LCLO major states, LCLO standing for linear

combinations of longitudinal order. We are interested in

modeling the auto- and cross-relaxation behavior of the

LCLO major states. For an isolated amide two-spin system,

auto and cross-relaxation behavior are described by the

following Liouville representation:

d

dt

ffiffiffi

2
p

NzHa
ffiffiffi

2
p

NzHb

� �

¼ � kþ gz �f
�f k� gz

� �
ffiffiffi

2
p

NzHa
ffiffiffi

2
p

NzHb

� �

ð9Þ

with

k ¼ d2
NH

8

6JðxNÞ þ JðxH � xNÞ
þ3JðxHÞ þ 6JðxH þ xNÞ

 !

þ c2
N

3
JðxNÞ

þ c2
N

6
JðxHÞ ð10Þ

and

gz ¼ cNdNHJ
NH=N
X ðxNÞ ð11Þ

and

n ¼ �d2
NH

8
ðJðxH � xNÞ � 3JðxHÞ þ 6JðxH þ xNÞÞ

� c2
H

6
JðxHÞ ð12Þ

where cX = B0cXDX, dXY = (l0/4p)cXcY (h/2p)rXY
-3, B0 is

the spectrometer static magnetic field, cX is the gyromag-

netic moment of nucleus X, DX is the magnitude of the

axial CSA of nucleus X, l0 is the permeability of free

space, rXY is the distance between nuclei X and Y, xX is the

Larmor frequency for nucleus X, J(xX) is the autocorrela-

tion spectral density function for angular motion of a par-

ticular vector at Larmor frequency X, and JX
XY/X(x) is the

cross-correlation spectral density function for combined

motion of the internuclear vector between nuclei X and Y

and the CSA principal axis of nucleus X at Larmor fre-

quency x.

For the isolated two-spin system, all relaxation pathways

are dominated by spectral densities at frequencies xN or

larger, and the relevant rates are on the order of 0.01–

0.1 s-1. However, the LCLO states experimentally (see

‘‘Results’’) cross-relax at rates one to two orders of mag-

nitude faster due to interactions with extraneous protons.

Table 1 Rotational correlation times for calmodulin, 308�K

sc || (ns) sc \ (ns)

CaM N-term free 5.5 ± 0.2 7.7 ± 0.2

Cam C-term free 4.9 ± 0.3 7.3 ± 0.3

CaM bound 6.4 ± 0.2 7.8 ± 0.1
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Ia. Symbolic representation of the relaxation process

The explanation for this fast cross-relaxation behavior lies

in the network of protons surrounding the NH spin system.

The presence of these protons, each of which may be in an

a or b state, splits each of the two LCLO major states into

several substates. H2NzHa splits into NzHaH0aH00a…,

NzHaH0aH
00

b…, NzHaH0bH00a… and so on, while H2NzHb

splits into NzHbH0aH00a…, NzHbH0aH00b…, NzHbH0bH00a…
and so on (for clarity of notation, we will neglect the

normalizing coefficients of LCLO substates). The total

population in each LCLO state is the sum of their substate

populations (see Fig. 3).

Figure 2 depicts an amide NH spin system with two

neighbor protons, and Fig. 3 shows the associated energy

level diagram. As is apparent from Fig. 3, the inclusion of

the proton network surrounding the NH spin system pre-

sents another pathway for cross-relaxation between the

LCLO major states. This pathway consists of zero-quantum

‘spin flip’ transitions between one proton in a given spin

state and a neighbor proton in the opposite spin state. For

example, NzHaH0bH00a… may undergo a zero-quantum

transition to NzHbH0aH00a…, or to NzHaH0aH00b…. For

LCLO network protons i and j, zero-quantum cross-relax-

ation will take place between states Nz…Hia…Hjb… and

Nz…Hib…Hja…. Density matrix calculations give the

relaxation rate governing this spin-flip process as:

jij ¼
1

4
d2

HiHj
JHiHj
ð0Þ ð13Þ

where the spectral density function JHiHj
ð0Þ is

JHiHj
ð0Þ ¼ S2R

2

5
sc ð14Þ

as defined in Post (1992) and Brüschweiler et al. (1992).

This definition of JHiHj
ð0Þ incorporates the effects of

radial (R) and angular (S2) motion of the relaxing protons

i and j with respect to one another, assuming that these

motions are not correlated. This is a necessary extension

in situations where the relaxing nuclei are not constrained

by a connecting chemical bond. Further information on

systems of this kind can be found in Olejniczak et al.

(1984).

The zero-quantum transition rate defined in (13) is *1–

3 s-1 for close interproton distances in proteins with

characteristic global diffusion times sc = 4–7 ns, and fas-

ter for larger proteins with slower global diffusion times.

These relaxation rates match the order of magnitude of

experimentally observed LCLO cross-relaxation behavior.

We will first develop the fitting model in the large mole-

cule/high magnetic field limit, defined such that zero-

quantum relaxation terms dwarfs all other relaxation

mechanisms. Subsequently, we will bring back all small

omitted terms and assess their cumulative effect on the

relaxation processes.

In this work, we use the gz/j pulse sequence (Weaver

and Zuiderweg 2008) incorporating symmetrical recon-

version techniques (Pelupessy et al. 2003). As described in

the original publication describing the experiment (Weaver

and Zuiderweg 2008), the sequence allows for the separa-

tion of gz and j. In the following, we assume that this

separation has been made; hence we will exclusively focus

on the other mechanisms that contribute to j.

Ib. Cross-relaxation and cross-correlated cross-relaxation

We now construct the system of first order differential

equations governing cross-relaxation in the LCLO substate

system depicted in Fig. 2, considering only zero-quantum

spin-flip terms in the relaxation matrix. In the following we

denote the amide proton as HA, the first neighbor proton as

H1, and the second neighbor proton as H2. The matrix is

related to a NOE relaxation matrix, in which the diagonal

R1 terms and ‘‘leakage’’ terms are removed. Rate matrices

of this type distribute initial perturbations of the Boltzmann

distribution throughout the system, without driving the

system back to equilibrium. Below, we will refine the

LCLO matrix by adding additional terms that do drive

the system back to thermodynamic equilibrium.

d

dt

NzH
A
a H1

aH2
a

NzH
A
a H1

aH2
b

NzH
A
a H1

bH2
a

NzH
A
a H1

bH2
b

NzH
A
b H1

aH2
a

NzH
A
b H1

aH2
b

NzH
A
b H1

bH2
a

NzH
A
b H1

bH2
b

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

¼ � �R

NzH
A
a H1

aH2
a

NzH
A
a H1

aH2
b

NzH
A
a H1

bH2
a

NzH
A
a H1

bH2
b

NzH
A
b H1

aH2
a

NzH
A
b H1

aH2
b

NzH
A
b H1

bH2
a

NzH
A
b H1

bH2
b

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

ð15Þ

where R is the relaxation matrix

Fig. 2 Relaxation network corresponding to the relaxation matrices

and Table 2 in the theory section of this work. Note that a much

extended network with up to 60 neighbor protons is used for the

actual data fitting
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Terms equal to the negative sum of the off-diagonal

cross-relaxation terms have been added to the diagonal

(auto-relaxation) rate entry of the relaxation matrix for

each LCLO substate in order to preserve detailed balance.

In order to clearly delineate the difference between true

auto-relaxation terms and diagonal terms which arise as a

result of detailed balance of cross-relaxation, the detailed

balance terms will be added during consideration of the

cross-relaxation elements of the matrix. Although they are

located on the diagonal of the matrix, they are not true

auto-relaxation processes.

As can be seen from the abbreviated form of the matrix,

LCLO substates may be conveniently represented by bin-

ary numbers, with 0 and 1 s replacing a’s and b’s. Bitwise

logic operations may be used to explore the operational

relaxation pathways between LCLO substates. For

instance, if the bitwise XOR of the binary representations

of two LCLO substates contains two and only two 1’s, a 0

in the first state has changed into a 1 in the second state (a

to b) while a 1 in the first state has changed into a 0 in the

second state (b into a). This indicates the presence of a

zero-quantum spin flip relaxation pathway between these

two states. Shortcuts such as these are convenient in the

computational treatment of LCLO relaxation.

Examination of this relaxation matrix (16) leads to the

following observations:

a When only the zero-quantum terms are considered, the

relaxation matrix may be blocked into submatrices repre-

senting isoenergetic levels in Fig. 3 (labeled block 0, block

1, etc.). Since only zero-quantum terms are being consid-

ered, each block exchanges magnetization only within

itself. Each block is characterized by a constant number of

a and b spins, corresponding to the sum of the spin quan-

tum number of all protons considered, mJ. Zero-quantum

relaxation processes conserve the total number of a and b

spins while rearranging their location within the proton

network.The energetic blocks in (16) are as follows:

Fig. 3 Definition of the energy levels in the proton relaxation

network shown in Fig. 2, and used for the relaxation matrices and

Table 2 in the theory section of this work. Note that a much extended

network with upto 60 neighbor protons is used for the actual data

fitting. The NaHa levels are in red; NaHb levels in orange; NbHa in

blue; NbHb in green. The cyan arrows symbolize 4 15N transitions

each; the magenta arrows symbolize four amide hydrogen transitions

each. The numbers indicate the relative populations in the NzHa,

equilibrium and NzHb state, respectively

�R ¼

0 0 0 0 0 0 0 0

0 K12 þ KA2 �K12 0 �KA2 0 0 0

0 �K12 K12 þ KA1 0 �KA1 0 0 0

0 0 0 KA1 þ KA2 0 �KA1 �KA2 0

0 �KA2 �KA1 0 KA1 þ KA2 0 0 0

0 0 0 �KA1 0 K12 þ KA1 �K12 0

0 0 0 �KA2 0 �K12 K12 þ KA2 0

0 0 0 0 0 0 0 0

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

ð16Þ
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b A system containing N neighbor protons contains

2N ? 1 substates in total, arranged among N ? 2 energy

level blocks. Let us refer to these blocks as Block 0, Block

1, Block 2, …, Block N ? 1, as above. In our labeling

system, block 0 contains the single substate with all protons

in the a state, block 1 contains substates having one b

proton, block 2 contains substates having two b protons,

and so on, all the way up to block N ? 1 which contains

the single substate having N ? 1 b protons. In general,

block mJ contains
N þ 1

mJ

� �

substates,
N
mJ

� �

of which

will be a substates and
N

mJ � 1

� �

of which will be b

substates.Here we use the common definition

N
mJ

� �

� N!
ðN�mJÞ!mJ !.

We next consider several other terms that contribute to

the cross-relaxation of the amide NH LCLO substate net-

work. These terms are united in the fact that they all

contain spectral density functions on the order of J(xH).

These spectral density functions are at least two orders of

magnitude smaller in magnitude than the zero-frequency

spectral density functions J(0) that govern the zero-quan-

tum spin flip transitions. For this reason, the non-J(0) terms

that we will examine here should be considered second-

order contributions to the overall relaxation behavior of the

system.

Single-quantum homonuclear proton–proton dipole–

dipole interactions (hereafter abbreviated SQHH interac-

tions) cause LCLO substates to exchange a single a spin for

a single b spin, or vice versa. For instance, NzHaH0bH00a…
may transition to NzHbH0bH00a… or to NzHaH0aH00a… due to

SQHH interactions. In general, SQHH interactions oper-

ating on the ith proton in the LCLO system connect states

Nz…Hia… and Nz…Hib…. We may sum the SQHH inter-

actions for the state-switching proton i over every other

proton j in the system, leading to a total rate:

SQHHi ¼
X

j

SQHHij ¼
X

j

3

8
d2

HiHj
JHiHj
ðxHÞ ð18Þ

In order to preserve legibility, we label SQHH interactions

with the single letter A when illustrating their placement in

the Liouville relaxation matrix. SQHH interactions enter

the Liouville-space relaxation matrix as:

Block 0 :
d

dt
NzH

A
a H1

aH2
a ¼ 0

Block 1 :
d

dt

NzH
A
a H1

aH2
b

NzH
A
a H1

bH2
a

NzH
A
b H1

aH2
a

2

6

6

4

3

7

7

5

¼ �
K12 þ KA1 �K12 �KA1

�K12 K12 þ KA2 �KA2

�KA1 �KA2 KA1 þ KA2

2

6

4

3

7

5

NzH
A
a H1

aH2
b

NzH
A
a H1

bH2
a

NzH
A
b H1

aH2
a

2

6

6

4

3

7

7

5

Block 2 :
d

dt

NzH
A
a H1

bH2
b

NzH
A
b H1

aH2
b

NzH
A
b H1

bH2
a

2

6

6

4

3

7

7

5

¼ �
KA1 þ KA2 �KA1 �KA2

�KA1 K12 þ KA1 �K12

�KA2 �K12 K12 þ KA2

2

6

4

3

7

5

NzH
A
a H1

bH2
b

NzH
A
b H1

aH2
b

NzH
A
b H1

bH2
a

2

6

6

4

3

7

7

5

Block 3 :
d

dt
NzH

A
b H1

bH2
b ¼ 0

ð17Þ

�R¼

P

A �A2 �A1 0 �AA 0 0 0

�A2 K12þKA2þ
P

A �K12 �A1 �KA2 �AN 0 0

�A1 �K12 K12þKA1þ
P

A �A2 �KA1 0 �AA 0

0 �A1 �A2 KA1þKA2þ
P

A 0 �KA1 �KA2 �AN

�AN �KA2 �KA1 0 KA1þKA2þ
P

A �A2 �A1 0

0 �AA 0 �KA1 �A2 K12þKA1þ
P

A �K12 �A1

0 0 �AA �KA2 �A1 �K12 K12þKA2þ
P

A �A2

0 0 0 �AA 0 �A1 �A2

P

A

2

6

6

6

6

6

6

6

6

6

6

6

6

4
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7

7

7

7

7

7

7

7

7

7

7

5
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wherein
P

A ¼
P

i Ai.

Heteronuclear NOE contributions to the LCLO relaxa-

tion matrix have already been mentioned. Heteronuclear

NOE processes connect LCLO substates along the same

pathways as SQHH interactions, allowing cross-relaxation

between single a spins and single b spins, or vice versa. For

instance, NzHaH0bH00a… may transition to NzHbH0bH00a… or

to NzHaH0AH00a… due to heteronuclear NOE interactions.

However, there is a complication caused by the mixed-

basis representation presented here, in which heteronuclear

NOE processes are operating between heteroatom spins in

the z state and proton spins in the a/b state. This causes the

familiar double-quantum/zero-quantum relaxation pro-

cesses produced by the heteronuclear NOE to be split

across cross- and auto-relaxation entries in the Liouville-

space relaxation matrix.

For each proton in the relaxation network, we may sum

all NOE interactions with heteronuclei over the entirety of

the protein. This sum yields the total rate at which NOE-

induced spin transitions take place for each individual

proton in the network.

The structure of heteronuclear NOE-type interactions in

the Liouville relaxation matrix consists of a split of equal

terms (here abbreviated B) between the auto and cross

relaxation components of a given single proton a–b state

pair. For instance: the state NzHaH0aH00b will have an NOE

term B with which it relaxes to itself (autorelaxation along

the diagonal into NzHaH0aH00b) and another NOE term B with

which it enters each other state available by a single-quantum

proton transition. These terms B both have the same sign.

The heteronuclear NOE term Bi affecting the state-

switching behavior of the ith proton is the sum over all j of

the ith state-switching proton’s heteronuclear NOE inter-

action with the jth heteronucleus (atom type X):

Bi ¼
X

j

Bij ¼
X

j

1

8
d2

HiXj
JHiXj
ðxH � xXÞ � 3JHiXj

ðxHÞ
�

þ6JHiXj
ðxH þ xXÞ

�

ð20Þ

When these summed heteronuclear NOE interactions are

added to the Liouville relaxation matrix for the LCLO

substate system, the relaxation matrix becomes:

where
P

B ¼
P

i Bi.

Single-quantum proton CSA relaxation operates along

the same relaxation pathways as the previous two

relaxation mechanisms, allowing cross-relaxation between

single a spins and single b spins. It depends on the

strength of the proton CSA, however, a quantity much

less rigorously quantified than the dipolar interaction

distances on which previous relaxation mechanisms have

been based. A CSA of 10 ppm for the amide proton is

consistent with orders of magnitude reported in the lit-

erature and will serve to illustrate the size of the

interaction.

Furthermore, since proton CSA relaxation is based on a

monic and not a dyadic interaction, the size of the proton

CSA relaxation rate does not scale with the number of

protons in the system. This causes proton CSA relaxation

to be a particularly minor contributor to LCLO relaxation;

in general, relaxation rates that do not scale with the

number of other atoms in the protein should be considered

third-order in the LCLO system. For the ith proton in the

LCLO network, the proton CSA relaxation (here abbrevi-

ated Ci)

Ci ¼
1

6
c2

Hi
JðxHÞ ð22Þ

is added to the Liouville relaxation matrix as follows:

�R¼

P

Aþ
P

B �A2þB2 �A1þB1 0 �AAþBA 0 0 0

�A2þB2 K12þKA2þ
P

Aþ
P

B �K12 �A1þB1 �KA2 �AAþBA 0 0

�A1þB1 �K12 K12þKA1þ
P

Aþ
P

B �A2þB2 �KA1 0 �AAþBA 0

0 �A1þB1 �A2þB2 KA1þKA2þ
P

Aþ
P

B 0 �KA1 �KA2 �AAþBA

�AAþBA �KA2 �KA1 0 KA1þKA2þ
P

Aþ
P

B �A2þB2 �A1þB1 0

0 �AAþBA 0 �KA1 �A2þB2 K12þKA1þ
P

Aþ
P

B �K12 �A1þB1

0 0 �AAþBA �KA2 �A1þB1 �K12 K12þKA2þ
P

Aþ
P

B �A2þB2

0 0 0 �AAþBA 0 �A1þB1 �A2þB2

P

Aþ
P

B

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

ð21Þ

�R ¼

� � � �A2 þ B2 � C2 �A1 þ B1 � C1 0 �AN þ BN � CN 0 0 0

�A2 þ B2 � C2 � � � �K12 �A1 þ B1 � C1 �KN2 �AN þ BN � CN 0 0

�A1 þ B1 � C1 �K12 � � � �A2 þ B2 � C2 �KN1 0 �AN þ BN � CN 0

0 �A1 þ B1 � C1 �A2 þ B2 � C2 � � � 0 �KN1 �KN2 �AN þ BN � CN

�AN þ BN � CN �KN2 �KN1 0 � � � �A2 þ B2 � C2 �A1 þ B1 � C1 0

0 �AN þ BN � CN 0 �KN1 �A2 þ B2 � C2 � � � �K12 �A1 þ B1 � C1

0 0 �AN þ BN � CN �KN2 �A1 þ B1 � C1 �K12 � � � �A2 þ B2 � C2

0 0 0 �AN þ BN � CN 0 �A1 þ B1 � C1 �A2 þ B2 � C2 � � �

2

6

6

6

6

6

6

6

6

6

6
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7

7

7

7

7

7

7
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The next cross-relaxation pathway we will take note of,

is, unlike the previous pathways, in that its characteristic

spectral density function is J(2xH). Double-quantum pro-

ton–proton dipolar interactions cause two protons in an

LCLO substate to change at once from either an a state to a

b state, or vice versa. For example, NzHaH0bH00a… may

transition to NzHbH0bH00b… due to a double-quantum pro-

ton–proton dipolar interaction. For LCLO network protons

i and j, double-quantum cross-relaxation, which we will

label Dij, will take place between states Nz…Hia…Hja…
and Nz…Hib…Hjb…. at the rate:

Dij ¼
3

2
d2

HiHj
JHiHj

2xHð Þ ð24Þ

These double-quantum interactions modify the Liouville

relaxation matrix in the following manner:

Cross-correlated cross-relaxation

Cross-correlated proton–proton cross-relaxation mecha-

nisms also exist in the LCLO system. These mechanisms

take two forms. The first consists of cross-correlation

between proton–proton dipolar relaxation and proton CSA

relaxation, while the second term consists of cross-corre-

lation between one proton–proton dipolar interaction and

another proton–proton dipolar interaction.

Other dipolar/CSA terms consist of cross-correlation

between heteroatom–proton dipolar relaxation and proton CSA

relaxation, as well as cross-correlation between one hetero-

atom-proton dipolar interaction and another nitrogen–proton

dipolar interaction. Spectroscopic means (180 pulses during

relaxation) are used to average, and consequently eliminate, the

effects of these heteroatom cross-correlated cross-relaxation

mechanisms on relaxation during the gz/j experiment.

Although the mechanisms vary, both active types of

cross-correlated cross-relaxation operate along the same

pathway as single-quantum cross relaxation. They cause

LCLO substates to switch a single a spin for a single b spin,

or vice versa. The sign of each cross-correlated cross-

relaxation term changes depending on the spin states of the

other proton states coupled by that term.

The rules for these sign changes are different for the

dipolar/CSA and dipolar/dipolar terms. First, identify the

proton whose state is being switched. In the case of a switch

from NzHaH0bH00a… to NzHaH0aH00a…, this is the H0 proton.

The proton–proton dipolar/proton CSA terms will have

this proton involved as one member of the dipolar pair, and

also as the CSA contributor. Next, consider the other

member of the dipolar pair. If the other member of the

dipolar pair is in the a state during the transition, the sign

will be negative; if the other member of the dipolar pair is

in the b state during the transition, the sign will be positive.

The contribution from the dipolar pair with state-switching

proton i and dipolar partner proton j will therefore be:

XC
DD=CSA

HH=H ¼ 1

2
cHi

dHiHj
JX

HiHj=Hi
ðxHÞ

ðdipolar partner in a stateÞ
ð26Þ

XC
DD=CSA

HH=H ¼ �1

2
cHi

dHiHj
JX

HiHj=Hi
ðxHÞ

ðdipolar partner in b stateÞ
ð27Þ

The proton–proton dipolar/proton–proton dipolar cross-

correlated cross-relaxation terms follow a different rule.

The proton whose state is being switched, will be involved

in both dipolar interactions. Again, we label this proton i.

Two other protons, j and k, are the dipolar partners of

proton i, one in each of the dipolar interactions. If the states

of proton j and k are the same, the sign of the dipolar/

dipolar cross-correlated cross-relaxation term will be

negative; if the states of proton j and k are different, the

sign of the term will be positive. The contribution from the

dipolar/dipolar terms with state-switching proton i and

dipolar partner protons j and k will therefore be:

XC
DD=DD

HiHj=HiHk
¼ 3

4
dHiHj

dHiHk
JX

HiHj=HiHk
ðxHÞ

ðj and k same state (a=a; b=bÞÞ
ð28Þ

XC
DD=DD

HiHj=HiHk
¼ �3

4
dHiHj

dHiHk
JX

HiHj=HiHk
ðxHÞ

ðj and k different state ða=b; b=aÞÞ
ð29Þ

Ic. Auto-relaxation and cross-correlated contributions to

auto-relaxation

The auto-relaxation behavior of the LCLO substates con-

sists of a common longitudinal relaxation rate shared

between all LCLO substates, with LCLO substate-specific

modifications based on cross-correlated and auto-relaxation

processes. We will first describe the common longitudinal

relaxation rate and then move through the various cross-

�R ¼

� � � �A2 þ B2 � C2 �A1 þ B1 � C1 �D12 �AN þ BN � CN �DN2 �DN1 0

�A2 þ B2 � C2 � � � �K12 �A1 þ B1 � C1 �KN2 �AN þ BN � CN 0 �DN1

�A1 þ B1 � C1 �K12 � � � �A2 þ B2 � C2 �KN1 0 �AN þ BN � CN �DN2

�D12 �A1 þ B1 � C1 �A2 þ B2 � C2 � � � 0 �KN1 �KN2 �AN þ BN � CN

�AN þ BN � CN �KN2 �KN1 0 � � � �A2 þ B2 � C2 �A1 þ B1 � C1 �D12

�DN2 �AN þ BN � CN 0 �KN1 �A2 þ B2 � C2 � � � �K12 �A1 þ B1 � C1

�DN1 0 �AN þ BN � CN �KN2 �A1 þ B1 � C1 �K12 � � � �A2 þ B2 � C2

0 �DN1 �DN2 �AN þ BN � CN �D12 �A1 þ B1 � C1 �A2 þ B2 � C2 � � �

2

6

6

6

6

6

6

6

6

6

6
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correlation effects on auto-relaxation within the LCLO

system.

The auto-relaxation rate common to all LCLO substates

is:

R ¼ 1

3
c2

NJNCSAðxNÞ þ
X

i

DDRi

¼ 1

3
c2

NJNCSAðxNÞ þ
X

i

1

4
d2

NHi
JNHi

xN � xHð Þð

þ3JNHi
xNð Þ þ 6JNHi

xN � xHð ÞÞ ð30Þ

where N is the amide nitrogen involved in the NH spin

system being probed.

Several cross-correlated auto-relaxation terms exist in

the LCLO system. These terms change sign depending on

the a/b substate of the protons within each substate, causing

each LCLO substate to display varying auto- as well as

cross-relaxation behavior. Their origin lies in cross-corre-

lation between nitrogen-proton dipolar and nitrogen CSA

relaxation, or between the nitrogen-proton dipolar relaxa-

tion mechanisms of two different protons.

The ith proton in an LCLO substate will contribute a

nitrogen-proton dipolar/nitrogen CSA cross-correlated

auto-relaxation rate of the form:

gzi
¼ cNdNHi

JX
NHi=NðxNÞ ðproton state aÞ ð31Þ

gzi
¼ �cNdNHi

JX
NHi=NðxNÞ ðproton state bÞ ð32Þ

where the sign of the contribution depends on the a or b

state of the ith proton.

The spectroscopic combination of the LCLO major

states ensures that only the amide proton HN’s DD/CSA

cross-correlated auto-relaxation contribution will be

observed in the final analysis of the experiment.

Meanwhile, the ith and jth proton in an LCLO substate

will contribute a nitrogen–proton dipolar/nitrogen–proton

dipolar cross-correlated auto-relaxation rate of the form:

DDDDij ¼
3

2
dNHi

dNHj
JX

NHi=NHj
ðxNÞ

ði; j states same ða; a or b; bÞÞ
ð33Þ

DDDDij ¼ �
3

2
dNHi

dNHj
JX

NHi=NHj
ðxNÞ

ði; j states different ða; b or b; aÞÞ
ð34Þ

Numerical values for all different longitudinal relaxation

rates for the spin system shown in Figs. 2 and 3, were

computed for a 15N–1H amide spin system with B0 = 11.47

T (500 MHz 1H), and sc = 7 ns, S2 = 1. These values are

presented in Table 2. It is clear that, individually, the rates

governed by spectral densities at frequencies higher than xN

are all very small compared to the J(0)-driven spin flips and

J(xN)-driven relaxation of the diagonal terms. For larger

proteins, j rates will dominate the spectral density terms. At

higher magnetic field, all J(x) terms other than J(0) will be

even smaller, making the j domination even larger. In the

‘‘Results’’ section, we will show that the cumulative effect

of the rates driven by J(x) terms other than J(0) can be

neglected in practice, even when working with calmodulin

on a 500 MHz spectrometer. Those interested in further

investigations into the theory of relaxation in AXn spin

Table 2 Sample longitudinal relaxation rates for the network of Figs. 2 and 3

Term J (x) term Rate (s-1) J (x) term J (w) Rate (s-1)

KA1 (ZQ A-1) J (0) 0.779 1H–15N NOE J (N ? H)

J (N - H)

0.007

K12 (ZQ 1–2) J (0) 0.097 SQ A (1a,2a)a J (H) 0.0034
15N CSA J (N) 0.3568 SQ A (1 a,2b)a J (H) 0.0082
15N–(1H) Dip J (N) J (N ? H)

J (N - H)

2.07 SQ 1 (Aa,2a)a J (H) 0.0031

gz J (N) 1.71 SQ 1 (A a,2b)a JH, JH2 0.0023

DQ A-1 J (2H) 0.0024

DQ 1–2 J (2H) 0.0003
1H-amide CSA J (H) 0.002

f J (H)

J (N ? H)

J (N - H)

0.003

Longitudinal relaxation rates for a 15N–1H amide spin system with two extraneous protons, as shown in Fig. 2. B0 = 11.47 T (500 MHz 1H), and

sc = 7 ns, S2 = 1. A = 1HN, 1 = 1H1, 2 = 1H2 as in the relaxation matrices. Because the network is symmetric, some values for 1H2 are not

listed. 15N CSA was 150 ppm, 1H-amide CSA was 10 ppm
a Symbols in the parenthesis show the spin states of the other two protons (effect of dipole–dipole/dipole–dipole cross correlation). SQ A

(1b,2b) = SQ A (1a,2a), SQ A (1a,2b) = SQ A (1b,2a), etc.
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systems should consult the classic review (Werbelow and

Grant 1977).

II. Approximating the LCLO system

The detailed LCLO system contains ten different relaxation

mechanisms operating over literally thousands of proton–

proton and heteroatom–proton interactions, each with its

own set of spectral density functions. These interactions

cannot be practically separated and individually charac-

terized with the current state of the art of NMR

spectroscopy.

We can, however, approximate the detailed LCLO

system by a simpler system that retains the important

features of the LCLO system while being accessible to

experiment. We will develop this approximation in two

stages.

The first stage of the approximation is to neglect the

operation of non-zero-quantum terms in the cross-relaxa-

tion elements of the matrix. Relevant auto-relaxation terms

(the common LCLO auto-relaxation rate, and the dipole–

dipole/CSA cross-correlated relaxation rate) are retained

along the diagonal. This is equivalent to returning to (16) in

the detailed description of the relaxation matrix given

previously.

The qualitative basis for this approximation is that, in

the large-molecule limit for which the experiment is

designed, zero-quantum processes dominate the relaxation

behavior of the LCLO system. Under conditions of relative

molecular rigidity, the total non-zero-quantum cross-

relaxation contribution from a given proton–proton inter-

action is 1–2% of the total zero-quantum relaxation con-

tribution. This is due to the relative sizes of the spectral

density function evaluated at zero frequency and at the

proton Larmor frequency xH; under semi-rigid molecular

conditions, J(0) is roughly 1009 larger than J(xH) at

500 MHz. Non-zero-quantum processes are consequently

lost in the experimental error of measuring the zero-

quantum processes.

In the ‘‘Results’’ section, we will return to this approx-

imation and make a quantitative appraisal of its validity

based on actual protein structures. For now, we will assume

its validity and discuss its consequences.

As mentioned earlier, retaining only the zero-quantum

terms in the LCLO relaxation matrix allows the matrix to

be split into submatrices describing zero-quantum relaxa-

tion within a single energetic block. For the relaxation

matrix these submatrices are, as illustrated previously:

The second step of the approximation is the replacement

of the zero-quantum dipolar relaxation rates KAj

(j = 1, …, N) between the amide proton and the N

neighbor protons involved in the LCLO system by the

mean rate across the N neighbor protons, K ¼
P

j KAj

�

N.

This is equivalent to replacing the real proton relaxation

network with an approximate proton relaxation network in

which all protons are equidistant from the amide proton.

This equidistance is set such that the sum of zero-quantum

relaxation rates between the amide proton and the virtual

equidistant protons in the approximation is equal to the

sum of zero-quantum relaxation rates between the amide

protons and all true neighbor protons in the molecule.

We justify this approximation by making a brief detour

into the conceptual similarities between the approximate

LCLO system and the study of chemical dynamics.

In chemical dynamics, chemical reaction processes are

examined for the effects of the energetic substate distri-

butions of reactants and products. For instance, one

vibrational energy state of a molecule may be much more

likely to undergo a given reaction process than other

vibrational energy states of the same molecule.

Consider a chemical system with an initial state i and

several possible final states f. The initial state converts to

Block 0 :
d

dt
NzH

A
a H1

aH2
a ¼ �ðRþ gzÞNzH

A
a H1

aH2
a

Block 1 :
d

dt

NzH
A
a H1

aH2
b

NzH
A
a H1

bH2
a

NzH
A
b H1

aH2
a

2

6

6

4

3

7

7

5

¼ �
Rþ gz þ K12 þ KA1 �K12 �KA1

�K12 Rþ gz þ K12 þ KA2 �KA2

�KA1 �KA2 R� gz þ KA1 þ KA2
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each final state at a rate kif. The chemical dynamics

expression K ¼
P

j KAj

�

N for the total rate of decrease of

the initial state is then simply:

ki ¼
X

f

kif ð36Þ

Now, consider an initial LCLO substate i which has

several possible final states f. For instance, NzHaH0bH00a…
has among its possible final states NzHbH0aH00a… and

NzHaH0aH00b…. The initial state converts to each final state

at a rate Kif. The expression for the total rate of decrease of

the initial LCLO substate is then:

Ki ¼
X

f

Kif ð37Þ

Although we cannot observe the individual Kif rates

(the rate at which individual neighbor protons generate

spin flips), we can observe their sum, the Ki rate (the rate

at which all neighbor protons together generate spin flips).

This suggests that we can make an approximation to the

real system (which has varying, unknowable Kif rates) by

constructing a virtual system with the same total Ki rate,

distributed equally across N equidistant virtual neighbor

protons. Each of these virtual neighbor protons has the

same Kif rate. The idea is that splitting the relaxation

contributions equally among equidistant virtual neighbor

protons allows the virtual system to approximate the

equilibration behavior of a real system and preserve

the same cross-relaxation rate Ki while sidestepping the

observationally intractable problem of dissecting Ki into

its component Kifs. We test this approximation in the

‘‘Results’’ section. For now, again, we will take it as

given and move along with exploration of its

consequences.

Under the equidistant virtual neighbor proton approxi-

mation, the interproton relaxation rates that involve zero-

quantum spin flips between LCLO substates sharing the

same LCLO major state, are removed from the system (an

example would be the pathway connecting NzHaH0bH00a
and NzHaH0aH00b, labeled K12 in the relaxation matrix

equations). Because we can only observe changes in LCLO

major state (i.e. changes in the amide proton spin state), we

may neglect substate exchanges that do not cause a change

of major state.

These simplifications drastically lower the number of

parameters required to describe the relaxation behavior of

the system. The system can now be described in terms of

the sum of zero-quantum relaxation rates K and the number

of virtual approximation protons N. The zero-quantum

relaxation submatrix blocks of the simplified system

become:

This representation gives only two kinds of rows in each

submatrix, one corresponding to substates belonging to the

NzHa major state and the other corresponding to substates

belonging to the NzHb major state. For the mJth energetic

block, each NzHa-type substate passes magnetization to mJ

NzHb-type substates, with all magnetization leaving at an

individual pathway rate K. Each NzHb-type substate passes

magnetization to N ? 1 - mJ NzHa-type substates, with all

magnetization entering and leaving at a rate K. Effectively,

the behavior of the individual substates has been homog-

enized within the major states. This representation is clo-

sely related to dividing the system in ‘‘flippable’’ and

‘‘unflippable’’ states as described in our earlier work

(Weaver and Zuiderweg 2008).

One may now remove the individual substates from the

energetic block picture and replace them with two single

states which represent substates belonging to NzHa and

NzHb major states. The NzHa-type substate passes magne-

tization to the NzHb-type substate at a rate (N ? 1 - mJ)K,

while the NzHb-type substate passes magnetization to the

NzHa-type substate at a rate mJK. The dynamics of the

NzHa- and NzHb-type substate in this representation are

Block 0 :
d

dt
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identical to the dynamics of an individual NzHa- and NzHb-

affiliated substate in the block picture above. This results in

the replacement of every block, ‘‘no matter its size’’, by a

2 9 2 representative matrix:

d

dt

NzHa

NzHb

� �

N;mJ

¼

�
RþgzþmJK �mJK

�ðNþ1�mJÞK R�gzþ Nþ1�mJð ÞK

� �

NzHa

NzHb

� �

N;mJ

ð39Þ

The intra-NzHa and -NzHb relaxation pathways—those

which transfer magnetization from NzHa-affiliated sub-

states to NzHa-affiliated substates, or from NzHb-affiliated

substates to NzHb-affiliated substates—have disappeared

from this representation. These relaxation pathways do not

produce ‘visible’ changes in magnetization state in the

2 9 2 representative matrix, and can be therefore be

ignored. The only productive pathways in the representa-

tive energetic block matrix are those leading from NzHa-

affiliated substates to NzHb-affiliated substates, and vice

versa.

For a given set of initial conditions, the solution of the

system of equations represented by this 2 9 2 matrix

yields the time evolution of a representative NzHa- and

NzHb-type substate within the mJth energetic block. This

can be used to calculate the time evolution of the NzHa

and NzHb major states within the mJth energetic block

after properly weighting the representative substates to

account for the number of substates within each energetic

block.

As mentioned previously, block mJ contains
N þ 1

mJ

� �

substates,
N
mJ

� �

of which will be a substates and

N
mJ � 1

� �

of which will be b substates. There are zero a

substates in the case of mJ = N?1, and zero b substates in

the case of mJ = 0 (in these cases, the binomial formula-

tion is nonsensical). Multiplying the NzHa and NzHb solu-

tions of the system of differential equations given in (39)

by, respectively,
N
mJ

� �

and
N

mJ � 1

� �

allows proper

accounting for the LCLO substate multiplicity within each

energetic block.

The final step is to divide the results of the system of

differential equations by 2N/2 in order to normalize the total

population of all substates. The time evolution of the

complete approximate LCLO system can then be calcu-

lated by summing (39) over all N ? 2 energetic blocks.

This leaves us with the final system of differential equa-

tions for the LCLO approximation:

d

dt
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" #
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¼
X
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" #

N;mJ

ð40Þ

Results

Data fitting procedure

Synthetic or experimental data was fitted in several steps.

The symmetric reconversion time evolution function X(t)

(see ‘‘Methods’’) for each residue is fit by Levenberg–

Marquardt nonlinear least squares while varying the num-

ber of equidistant protons N from 1 to 60 (Fig. 4). The

number of neighbor protons needed for the fit is a function

of the protein correlation time and isotopic labeling

scheme. For 15N-labeled, protonated calmodulin, optimal N

values varied between 5 and 11. The fit also includes

parameters governing the purity of initial magnetization

state preparation (either NzHa or NzHb, typically [ 95%).

The fitted K-rates and state purity parameters are then used

to fit the symmetric reconversion time evolution function

Y(t) (see ‘‘Methods’’) for the value for gz for each residue

and the efficiency of observing NzHa or NzHb magnetiza-

tion (typically 10% more efficient for NzHb than NzHa).

Bootstrap statistical methods (Efron and Tibshirani 1994)

are used to construct confidence intervals for the fitting

parameters.

Validation of the approximate LCLO system

In order to validate the equidistant proton network

approximation, we generated synthetic relaxation data for

the peptide-bound form of Ca2?-bound calmodulin using

the X-ray coordinate file 2O5G.pdb. The hydrogen atoms

were placed with MolProbity (Lovell et al. 2003). For each

amide proton, we took into account the eight nearest

protons.
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The system was set up for axially symmetric diffusion

according to our experimentally determined diffusion

parameters for smMLCKp/CaM and included all possible

relaxation mechanisms including proton–proton dipolar/

proton–proton dipolar cross correlations. We assumed an

order parameter of 0.8 for all spectral density functions

with a local correlation time of 1 ps. We then fit this

synthetic data using the equidistant proton network

approximation with only proton–proton spin-flip (K) rates

and compare the K-rates resulting from this fit to the

detailed K-rates which were used to generate the synthetic

dataset. The comparison of the synthetic K-rates and back-

fitted K-rates is shown in Fig. 5.

The correspondence is excellent (p = 0.995) over the

range of K-rates between 3 and 13 s-1. This is strong proof

that the neglect of higher frequency spectral density terms

and use of the equidistant proton approximation is justified.

Data fitting for calmodulin

An example of the quality of data fits using the equidistant

proton approximation for smMLCKp-bound calmodulin is

shown in Fig. 6. Figure 7 shows all fitted K values for free

and bound calmodulin. As expected, the K values vary

strongly over the protein due to diversity in local proton

environments. Error bars are obtained from 200 Monte

Carlo simulations, and are seen to be smaller than the

variation in K-rates. Several residues in free and bound

form demonstrate very fast K-rates. These outliers can

likely be explained by amide proton exchange: exchange

between amide protons and water protons will scramble the

prepared NzHa and NzHb states, giving rise to large K

values.

Amide proton exchange has been extensively studied for

Ca2?-CaM free in solution and bound to M13 skeletal

muscle MLCK (Spera et al. 1991), a peptide similar to the

smooth muscle MLCK peptide used in this study (Crivici

and Ikura 1995). Residues for which the free or M13-bound

exchange rate was found to be larger than 1 s-1 are ren-

dered in grey in Fig. 7. The outliers in the raw K data for

the free/smMLCK system all correspond to amide protons

with very fast exchange rates in the free/M13 system. For

instance, the outlier for N42 at 30 s-1, was reported (Spera

et al. 1991) to have an amide proton exchange rate

kHX = 120 s-1. In principle, one should be able to correct

experimental K-rates for amide proton mass-exchange rates

and water—amide NOEs values provided the experimental

conditions of the latter experiments are identical. Currently

we do not have such data available. For this reason, resi-

dues with reported amide exchange rates faster than 1 s-1

in free or bound form are not included in our analysis of

proton–proton dynamics.

Figure 8 illustrates Q, the ratio of the experimental

K-rates to those computed from the structure. Due to X-ray
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0.1

0.2

0.3

0.4

0.5
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Fig. 4 Fitting of the symmetric reconversion function X(t) (see

‘‘Materials and methods’’) as a function of number of neighbor

equidistant protons N. The symbols are synthetic data taking the eight

closest protons in the PDB file for residue Ile 100 of bound

calmodulin into account, using all possible relaxation mechanisms;

axially symmetric rotational diffusion as in Table 1; S2 = 0.8;

se = 1 ps; 500 MHz. Grey lines are test fits using the equidistant

proton approach, varying N from 1 to 60. The lowest trace at

time = 0.2 s is for a N = 1, the highest trace corresponds to N = 60.

The black line is the best fit, which occurred for N = 5 equidistant

protons
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Fig. 5 Synthetic relaxation data, NzHa (t = 0) ? NzHa(t), NzHa

(t = 0) ? NzHb(t), NzHb (t = 0) ? NzHa(t) and NzHb

(t = 0) ? NzHb (t) was generated from the PDB file for all residues

of bound calmodulin, taking the eight closest neighbors for each

amide into account and using all possible relaxation mechanisms with

all spectral density terms; using axially symmetric rotational diffusion

as in Table 1; S2 = 0.8; se = 1 ps; 500 MHz. These synthetic

relaxation data were fitted with the equidistant proton approach,

using terms with spectral densities J(0) only. The obtained fitted K-

rates, averaged over 200 Monte Carlo trials, are shown on the vertical
axis. On the horizontal axis are the input K-rates as derived from the

crystal structure. The solid line is y = x. The correlation coefficient is

0.995
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structural imprecision and its effects on theoretical K-rates

(see ‘‘Methods’’ and ‘‘Discussion’’), relative errors in Q are

considerably larger than relative errors in experimental

K-rates. Deviations of Q from 1 are due to sub-nanosecond

motion of the proton network in the vicinity of the amide

protons. Local angular motions of the inter proton vectors

will reduce Q. For these cases, Q is similar in concept to a

classic S2 order parameter. However, in a non-covalent

network, it is also necessary to consider dynamic changes

in interproton distances. If we consider the coordinates

used to compute the theoretical K-rates to represent the

dynamic average, we must consider two possibilities.

Translational fluctuations of a neighboring proton along the

virtual vector connecting it with the amide proton will

foreshorten the apparent interproton distance (by the 1/r6

mechanism), leading to higher K-rates, and hence Q values

larger than one. Translational fluctuations perpendicular to

the virtual connection vector will make the interproton

distance longer, reducing Q. In this case, Q is further

reduced by the apparent angular motion of the interproton

vector.

Hence, it is possible to associate values of Q different

than one as indicative motion, but the amplitude of the

motion does not necessarily change monotonously with

increasing deviation of the value. Indeed, even Q values of

unity could hide motions that counteract each other in

relaxation effects. For a detailed discussion of the Q

0.05 0.1 0.15 0.2
0
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0.6

0.8

time (s)

Fig. 6 Examples of the quality of the equidistant proton fitting of

experimental 500 MHz X(t) cross relaxation data (see ‘‘Materials and

methods’’) for Ile 100 of peptide-bound calmodulin. The faint grey
lines give the fits ±1 SD in the ensemble of 200 Monte Carlo trials. K
value is 10.2 ± 0.5 s-1. Note that the fitting process allows a small

offset at the origin; this is to take into account imperfect preparation

of the initial states

Fig. 7 K-rates fitted to the

experimental relaxation curves

for calmodulin free (top) and

calmodulin bound (bottom). The

error bars were obtained from

200 Monte Carlo trials. In grey
are the residues for which amide

protons exchange faster than

1 s-1 (see Spera et al. 1991).

These residues are not included

in the data analysis of the next

figures. In this and subsequent

figures, thick horizontal bars
denote helical regions of CaM,

gray horizontal bars denote

Ca2?-binding loops, and thin
horizontal lines denote other

loops of CaM
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parameter, readers are referred to the work of Post et al.

(1989) and Post (1992).

Discussion

Q and peptide binding in calmodulin

The great majority of Q values (Fig. 8) are smaller than 1

for both free and bound calmodulin. Average Q values are

(\QNTerm[ = 0.82 ± 0.02 and\QCTerm[ = 0.80 ± 0.02)

for free calmodulin and (\QNTerm[ = 0.88 ± 0.02 and

\QCTerm[ = 0.89 ± 0.02) for smMLCKp—bound cal-

modulin. The N terminus comprises residues 1–76 and the

C terminus comprises residues 82–148. A paired t-test of Q

values in free and smMLCKp-bound calmodulin indicates

that the means of these values differ with a p value of

0.001. The 95% confidence interval for the change in the

mean Q is 0.03–0.11. For the N-terminal domain alone the

paired t-test p value is 0.05 and the 95% confidence

Fig. 8 Q-values for

calmodulin. Top panel bound

calmodulin; middle panel free

calmodulin; bottom panel
bound—free. Average Q values

are:\QNT[ = 0.82 ± 0.02 and

\QCT[ = 0.80 ± 0.02 for free

calmodulin, and

\QNT[ = 0.88 ± 0.02 and

\QCT[ = 0.89 ± 0.02 for

smMLCKp—bound calmodulin

(N terminus = residues 1–76; C

terminus = residues 82–148)
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interval is 0.00–0.12, while for the C-terminal domain

alone the paired t-test p value is 0.01 and the 95% confi-

dence interval is 0.02–0.14. These results clearly indicate

global quenching of proton–proton dynamics in Ca2?-sat-

urated calmodulin upon smMLCKp binding. Our experi-

mentally measured Q values agree well with values found

in earlier theoretical and experimental work (Post 1992;

Brüschweiler et al. 1992; Olejniczak et al. 1984).

The distribution of Q values for bound and free states is

shown in Fig. 9. As discussed previously, mean and med-

ian Q values are both considerably\1. The shift in average

Q between bound and free calmodulin constitutes a shift in

the total distribution.

Q values are dependent on accurate measurements of the

rotational diffusion tensor, since the theoretical K-rates are

constructed from measurement of the diffusion tensor. In

this work, we obtained axially symmetric rotational diffu-

sion tensors and associated site-specific sc values from the

ratio of the 15N CSA/15N–1HN dipolar cross correlation

ratios gxy/gz (see ‘‘Materials and methods’’). We obtain

values that are on average 10% smaller than the 15N R2/R1

ratio-based sc values reported for this protein in the liter-

ature (Lee et al. 2000). Without evaluating the relative

merits of these methods, we note that the use of the liter-

ature values for sc would cause \Q[ to decrease by 10%.

The fact that\Q[is (significantly) less than one implies

the presence of sub-nanosecond motion of the proton

environment of the amide protons. Due to different and

potentially counteracting effects of local motions on Q

(Post 1992 and ‘‘Results’’ section), one may not (at this

time) simply assign more motion to free calmodulin

(\Q[ = 0.81 ± 0.02) than to smMLCKp—bound cal-

modulin (\Q[ = 0.88 ± 0.02).

Nevertheless, there are some trends in the statistics of Q

factors that do suggest that we can, after all, associate

lower Q values with more motion. Consider Fig. 10, which

compiles the Q-data according to the percentage contri-

bution of different types of protons driving the amide

proton flip rates. Dominance of the Ca-proton (mostly of

the same residue) is associated with higher values of Q,

indicating little motion of the protein backbone itself, in

accordance with 15N relaxation measurements for this

protein (Lee et al. 2000). Dominance of sidechain c protons

(predominantly located on the residue’s own sidechain) is

associated with Q values tending to 0.5, indicating motions

of very significant amplitude in these moieties. Dominance

of Hb does not show any particular trend, likely reflecting

their intermediate position between the Ha and Hc’s which

have opposite trends. The statistics for the amide protons in

the bound state shows similar trends as for the Ca protons.

This would also indicate that the dynamics of the amide–

amide proton vector are rather restricted.

Overall, trends in Fig. 10 are to be expected if Q, like an

order parameter, does anticorrelate monotonically with

motion. Potentially, one may consider Q values as a semi-

quantitative measure of the motions of the sidechain of the

same residue. But before a quantitative relation can be

established, more work, including comparison with com-

putational molecular dynamics, is required.

If we take the observations above to indicate that \Q[
is at the very least a ‘‘monotonic’’ function that anticorre-

lates with local sidechain motion, we may conclude that the

protein relaxation network as seen by the amide proton is

significantly more dynamic than that as felt by the amide

nitrogen. This conforms to the common observation that all

dynamical measures, such as S2CH3-detected dynamics

(Lee et al. 2000; Tugarinov et al. 2007), backbone RDC-

detected dynamics (Peti et al. 2002), backbone 13CO-

detected dynamics (Pang et al. 2002), and cross correlated

dynamics (Ferrage et al. 2006) such as backbone 13C–15N

tensor reorientation detected dynamics (Pellecchia et al.

1999), indicate more motion than classical 15N-detected

dynamics. It also supports results from molecular dynamics

calculations, which show large amplitude sidechain

motions even in the protein interior (Best et al. 2005).

If we assume that \Q[ is a monotonic function that

anticorrelates with local sidechain motion, we may asso-

ciate the difference in Q values (Fig. 8) and/or the shift in

the Q distribution between free and smMLCKp—bound

calmodulin (Fig. 9), as a change in motion. Especially the

Fig. 9 The distribution of Q
values for free calmodulin (open
bars) and bound calmodulin

(closed bars). Left N terminus

(residues 1–76) Right C

terminus (residues 82–148)
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difference in Q in Fig. 8 is very reminiscent of work pre-

sented by Lee et al. (2000), which shows a similar change

in S2CH3 for the same protein upon binding of the same

ligand. Surprisingly, and likely by chance, the increase in

average Q,\DQ[of 0.07 upon ligand binding corresponds

to the done\DS2CH3[of 0.07 as determined by Lee et al.

(2000).

Effect of the limited precision of experimental protein

structures

In this work, we have used the 1EXR.pdb and 2O5G.pdb

X-ray crystal structures (1.0 and 1.08 Å resolution,

respectively). As explained in the ‘‘Methods’’ section, this

resolution formally translates into a 0.055 to 0.075 Å

Fig. 10 Structural statistics of

Q. The horizontal axis specifies

the percentage of the

contribution to theoretical K
values as expected from the

PDB coordinates of the protein

for the indicated type of

neighbor proton. The vertical

axis gives the Q value

associated with the proton. Left
calmodulin free; right
calmodulin bound. From top to

bottom HN, HA, HB (no

methyls), HG (no methyls)
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point-to-point distance imprecision, contributing *5.5%

and error and *7.5% error margins to theoretical K-rates.

These errors only slightly larger than the errors of fit, and

are much smaller than the individual differences in K-rates.

Hence, the salient points of our discussion in terms of

structure and dynamics are not affected by this.

However, more commonplace structures are of 1.5–

2.0 Å resolution, and have a point-to-point distance pre-

cision of 0.3–0.4 Å. Distance errors of this size would

render a calculation of Q essentially meaningless under the

assumptions made above, since the error in Q measure-

ments in combination with r-6-dependent relaxation rates

would cause large swings in theoretical K-rates.

However, this assertion may be overly harsh. Intuitively,

the proton geometry immediately local to a given amide

proton should be reasonably well defined by the restrictions

placed upon it by just a few bond lengths and angles.

Although estimates of a given atom’s absolute position in

space may be imperfect, the network of chemical bonds

near an atom ensures that relative inter-atomic distances

and orientations are preserved, and these may be known

with high precision even when the overall precision of the

structure is lower. This means that one may be able to

make a more precise estimate of distances between nearby

neighbors than would be expected from the error in the

difference between two absolute position estimates.

Structure-free use of K-rates

In the absence of a high-resolution structure, possibilities

remain for using K-rates in experimental structural biology.

The key is the ability to compare two different molecular

states.

Changes in K-rates, when corrected for changes in

overall rotational correlation times, between states A and B

indicate that the local proton network experiences a

structural and/or dynamic perturbation during the transition

from A to B. In the case of calmodulin, changes in K

correlate (weakly) with changes in Q (Fig. 11). Investi-

gating this in more detail, we find that protons within 4 Å

of the amide protons, reporting the ten largest changes are

concentrated within the hydrophobic clefts of both domains

and in the face of helix 1 packed against the bound peptide

(Fig. 12). Hence, without knowledge of the structure, one

would in this example be able to use the comparison of

K-rates to help pinpoint the areas that change most in

structure and dynamics.

Quantitatively, the mean N-terminal corrected K-rate

increases by 5%, while the mean C-terminal corrected

K-rate increases by 8%. One may infer increased proton

density or quenched proton dynamics for these areas from

these changes, both of which would raise K-rates. Likely,

one phenomenon goes hand in glove with the other (Zhang

and Bruschweiler 2002; Ming and Bruschweiler 2004).

This may be compared with increases in mean Q by 7 and

10% for the N and C-terminal areas, respectively. Hence,

even without structure, one would correctly conclude

quenching in dynamics for these areas. This example

therefore suggests that changes in K may provide leads on

the location of binding sites, regions of structural plasticity,

and other functionally interesting areas in the absence of

detailed structural information.

Fig. 12 Illustration of ten largest corrected K changes (by absolute

value) upon smMLCKp binding to Ca2?-saturated calmodulin.

smMLCK peptide in yellow, evolutionarily conserved smMLCKp

major hydrophobic anchors W5 and L18 in red. All smMLCK atoms

are displayed. CaM protons are generally in black with CaM protons

within 4 Å of amide protons reporting ten largest corrected K changes

in green. Protons belonging to residues excluded due to amide proton

exchange are not included in the illustration. Sphere size is set to one-

half the van der Waals radius for clarity of illustration
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Fig. 11 Correlation plot of change in corrected K versus change in Q
upon smMLCKp binding to Ca2?-saturated calmodulin. The value of

the correlation coefficient is 0.68
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Relative merit of methods

The Q ratios are not formally related to order parameters,

since each residue’s K-rate is affected by the radial and

axial dynamics of several dipole–dipole vectors (see

‘‘Results’’). This is a drawback in that it is not possible to

associate a single precise motion with Q, but simulta-

neously, it is an advantage in that Q is not as ‘‘myopic’’ as a

true order parameter, which detects only the perpendicular

angular motion of a single type of vector. As discussed

above, even translational motions, classically opaque to

NMR relaxation, will affect both distance and angle of the

interproton vectors, and can be detected by the new

method. As an advantage to ILV-directed methyl dynamics

(Yang et al. 1998), Q sidechain dynamics can be obtained

for every residue in the sequence, as it just requires 15N

labeling. Nevertheless, the method cannot replace more

precise S2CH3 side chain order parameter determinations,

and must be seen as a complement to those methods: less

accurate, but possibly covering broader ground. The

method holds advantages over 15N relaxation measure-

ments, not only by the virtue that it is less ‘‘myopic’’, but

also by the fact that the experiments can be carried out for

larger proteins, since no insensitive 1H ? 15N NOE

experiment is required (Gong and Ishima 2007). In addi-

tion, the experiments do not challenge spectrometer hard-

ware, as no CPMG, T1q or other decoupling sequences are

required.

The method has as an inherent advantage that the key

rate parameter, K, scales with J(0) and hence increases

linearly with molecular weight. Moreover, non-zero-fre-

quency spectral density functions decrease in size as

molecular weight and magnetic field strength increase,

efficiently ‘‘cleaning up’’ the experiment. Q is also inde-

pendent of cross correlation, CSA and conformational

exchange contributions, and is hence not affected by the

increases in magnetic field needed for the studies of larger

proteins.

Deuteration of part or all of the non-amide proton net-

work provides an opportunity to continue K experimenta-

tion in proteins larger than 50 kDa. Replacement of protons

with deuterons removes protons out of the relaxation net-

work, leading to slower K-rates, but the increase in

molecular weight will compensate for this. The K-rates

would report on inter-amide proton relaxation, which is

rather limited, but is still better than having no backbone

dynamics measurements at all. Deuteration of part or all of

the non-amide proton network also provides an opportunity

to sort the local dynamics of smaller proteins in backbone

and sidechain contributions.

Lastly, the methods are equally applicable to imino

protons in nucleic acids and to carbon-bound protons in

both proteins and nucleic acids. Although TROSY effects

are diminished in such protons, one can still study the cross

relaxation between the proton ‘‘up’’ and proton ‘‘down’’

states using the same gz/K NMR experiment, with 13C

rather than 15N pulses, and using the same data interpre-

tation and fitting methods.
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